On the non-randomness of maximum Lempel Ziv complexity sequences of finite size
نویسندگان
چکیده
Random sequences attain the highest entropy rate. The estimation of entropy rate for an ergodic source can be done using the Lempel Ziv complexity measure yet, the exact entropy rate value is only reached in the infinite limit. We prove that typical random sequences of finite length fall short of the maximum Lempel-Ziv complexity, contrary to common belief. We discuss that, for a finite length, maximum Lempel-Ziv sequences can be built from a well defined generating algorithm, which makes them of low Kolmogorov-Chaitin complexity, quite the opposite to randomness. It will be discussed that Lempel-Ziv measure is, in this sense, less general than Kolmogorov-Chaitin complexity, as it can be fooled by an intelligent enough agent. The latter will be shown to be the case for the binary expansion of certain irrational numbers. Maximum Lempel-Ziv sequences induce a normalization that gives good estimates of entropy rate for several sources, while keeping bounded values for all sequence length, making it an alternative to other normalization schemes in use.
منابع مشابه
A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملOn Lempel-Ziv complexity for multidimensional data analysis
In this paper, a natural extension of the Lempel-Ziv complexity for several finitetime sequences, defined on finite size alphabets is proposed. Some results on the defined joint Lempel-Ziv complexity are given, as well as properties in connection with the Lempel-Ziv complexity of the individual sequences. Also, some links with Shannon entropies are exhibited and, by analogy, some derived quanti...
متن کاملOn Lempel-Ziv Complexity of Sequences
We derive recurrences for counting the number a(n, r) of sequences of length n with Lempel-Ziv complexity r, which has important applications, for instance testing randomness of binary sequences. We also give algorithms to compute these recurrences. We employed these algorithms to compute a(n, r) and expected value, EPn, of number of patterns of a sequence of length n, for relatively large n. W...
متن کاملA Randomness Test Based on T-Complexity
We propose a randomness test based on the T-complexity of a sequence, which can be calculated using a parsing algorithm called Tdecomposition. Recently, the Lempel-Ziv (LZ) randomness test based on LZ-complexity using the LZ78 incremental parsing was officially excluded from the NIST test suite in NIST SP 800-22. This is caused from the problem that the distribution of P-values for random seque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2013